Math 261

Spring 2023
Lecture 53

Feb 19-8:47 AM

If f is cont. on $[a, b]$ and

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

then $g^{\prime}(x)=f(x)$ and $g(x)$ is diff on and $g(x)$ is cont. on
$[a, b]$

$$
\begin{aligned}
& g(x)=\int_{\text {un) }}^{v(x)} f(t) d t \\
& g^{\prime}(x)=f(v(x)) \cdot v^{\prime}(x)-f(u(x)) \cdot u \\
& g(x)=\int_{4 x}^{x^{2}} \sin ^{2} t d t \\
& g^{\prime}(x)=\sin ^{2} x^{2} \cdot 2 x-\sin ^{2} 4 x \cdot 4 \\
& g^{\prime}(x)=2 x \sin ^{2} x^{2}-4 \sin ^{2} 4 x
\end{aligned}
$$

May 22-8:55 AM

$$
\begin{aligned}
& =f(v(x)) \cdot r^{\prime}(x)-f(u(x)) \cdot u^{\prime}(x) \\
& =\frac{(3 x)^{2}-1}{(3 x)^{2}+1} \cdot 3-\frac{(2 x)^{2}-1}{(2 x)^{2}+1} \cdot 2 \\
& =\frac{9 x^{2}-1}{9 x^{2}+1} \cdot 3-\frac{4 x^{2}-1}{4 x^{2}+1} \cdot 2 \\
& =\frac{\left(4 x^{2}+1\right) \cdot 3\left(9 x^{2}-1\right)-\left(9 x^{2}+1\right) \cdot 2\left(4 x^{2}-1\right)}{\left(9 x^{2}+1\right)\left(4 x^{2}+1\right)}=\square
\end{aligned}
$$

If $f(x)=\int_{0}^{x}\left(1-t^{2}\right) \cos ^{2} t d t$, on what interval $\underbrace{f(x) \text { in increasing? }}_{f^{\prime}(x)>0}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x} \int_{k_{u(x)}}^{\substack{x-\sqrt{x}(x)}} \begin{array}{l}
\left(1-t^{2}\right) \cos ^{2} t
\end{array} d t \\
& =g(v(x)) \cdot v^{\prime}(x)-g(u(x)) \cdot u^{\prime}(x) \\
& =\left(1-x^{2}\right) \cdot \cos ^{2} x \cdot 1-\left(1-x^{2}\right) \cos 0 \cdot 0 \\
& f^{\prime}(x)=\left(1-x^{2}\right) \cdot \cos ^{2} x \\
& \begin{array}{l}
f(x)=\left(1-x^{2}\right) \cdot \cos ^{2} x \\
f^{\prime}(x)>0 \quad\left(1-x^{2}\right) \cdot \cos ^{2} x>0
\end{array} \\
& 1-x^{2}>0 \Rightarrow(-1,1) \\
& f(x) \text { is increasing } \\
& \text { on (}-1,1 \text {). }
\end{aligned}
$$

Discuss $\underbrace{\text { concavity }}_{y^{\prime \prime}>0 \text { C.U. }}$ for $y=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} d t$

$$
y^{\prime \prime}<0 \quad C \cdot D
$$

$$
y=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} d t \Rightarrow y^{\prime}=\frac{x^{2}}{x^{2}+x+2} \cdot 1-\frac{0^{2}}{0^{2}+0+2} \cdot 0
$$

$$
y^{\prime}=\frac{x^{2}}{x^{2}+x+2}
$$

$$
y^{\prime \prime}=\frac{2 x\left(x^{2}+x+2\right)-x^{2} \cdot(2 x+1)}{\left(x^{2}+x+2\right)^{2}}
$$

$$
y^{\prime \prime}=\frac{2 x^{3}+2 x^{2}+4 x-2 x^{3}-x^{2}}{\left(x^{2}+x+2\right)^{2}}=\frac{x^{2}+4 x}{\left\{\left(x^{2}+x+2\right)^{2}\right\}}
$$

$$
y^{\prime \prime}=0 \rightarrow x^{2}+4 x=0 \rightarrow x=0, x=-4
$$

$$
\begin{array}{lll}
y^{\prime \prime}>0, & y^{\prime \prime}<0, & y^{\prime \prime}>0 \\
\hline \text { C.U. } & \\
\hline & \text { C.D. } & \text { C.U. }
\end{array}
$$

Concave UP

$$
(-\infty,-4),(0, \infty)
$$

concave down

$$
(-4,0)
$$

find the volume of a solid obtained by rotating the enclosed region by $y=x$ and $y=x^{2}$ about y-axis.

Intersection points are $(0,0),(1,1)$ Ref. Rect. is parallel $x-x^{2} \rightarrow$ to A.O.R.
shell Method

1) How far is Ref. Rect. From A.O.R.? x
2) Height of Ref. Rect.

$$
V=\int_{0}^{1} 2 \pi \cdot x \cdot\left(x-x^{2}\right) d x=\square
$$

find the volume obtained by rotating enclosed region by $y=\sqrt{x}, y=x$ about x-axis. $R=\sqrt{x}$ $r=x$
Ref. Rect. 1 A.O.R.
Region not completely attached to A.O.R. washer method

$$
\begin{aligned}
& V=\int_{0}^{1} \pi\left[R^{2}-r^{2}\right] d x=\pi \int_{0}^{1}\left((\sqrt{x})^{2}-x^{2}\right) d x \\
& =\pi \int_{0}^{1}\left(x-x^{2}\right) d x \\
& \left.=\pi\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]\right]_{0}^{1} \\
& =\frac{\pi}{6}
\end{aligned}
$$

Let's do shell Method

$$
\begin{aligned}
& V=\int_{0}^{I} 2 \pi \cdot y \cdot\left(y-y^{2}\right) d y=2 \pi \int_{0}^{1}\left(y^{2}-y^{3}\right) d y \\
&\left.=2 \pi\left[\frac{y^{3}}{3}-\frac{y^{4}}{4}\right]\right]_{0}^{1} \\
&=2 \pi \cdot \frac{1}{12}=\frac{\pi}{6}
\end{aligned}
$$

Class QE 15
find fave for $f(x)=\sin 4 x$ on $[-\pi, \pi]$.

$$
\begin{aligned}
& f_{\text {ave }}=\frac{1}{\pi-(-\pi)} \int_{-\pi}^{\pi} \sin 4 x d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin 4 x d x \quad \begin{array}{ll}
u=4 x \\
d u=4 d x
\end{array} \\
& =\frac{1}{2 \pi}\left[\frac{-1}{4} \cos 4 x\right]_{-\pi}^{\pi}=\frac{-1}{8 \pi}[\cos 4 \pi-\cos (-4 \pi)] \quad \frac{d u}{4}=d x \\
& =\frac{-1}{8 \pi}\left[\begin{array}{ll}
1 & -1
\end{array}\right]=0
\end{aligned}
$$

May 22-9:40 AM

