

Feb 19-8:47 AM

May 18-9:33 AM

IS
$$f$$
 is cont. on $[a,b]$ and $g(x) = \int_{a}^{x} f(t) dt$ $a \le x \le b$

then $g'(x) = f(x)$ and $g(x)$ is diff.on
 (a,b)
and $g(x)$ is cont. on
$$[a,b]$$

$$g'(x) = \int_{a}^{b} f(t) dt$$

$$g'(x) = \int_{a}^{b} f(x) dt$$

May 22-8:55 AM

$$\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1$$

May 22-9:07 AM

May 22-9:10 AM

Discuss concavity for
$$y = \int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} dt$$
 $y'' > 0$ C.U.

 $y'' < 0$ C.D.

 $y'' = \int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} dt$
 $y'' = \int_{0}^{x} \frac{$

May 22-9:17 AM

May 22-9:25 AM

May 22-9:31 AM

Class QZ 15

Sind Jave For
$$S(x) = Sin 4x$$
 on $[-\pi, \pi]$.

Sin4x dx = $\frac{1}{\pi - (-\pi)} \int_{-\pi}^{\pi} Sin4x dx = \frac{1}{2\pi} \int_{-\pi}^$

May 22-9:40 AM